基于心脏信号生物识别综述

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:wbmissing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于心脏信号的生物识别技术是目前生物识别的重要研究方向,对基于心脏信号的身份识别技术以及用于身份识别的各种心脏信号及其产生的机理进行介绍,并对心脏信号的采集形式进行分析。通过对多种基于心脏信号的身份识别技术步骤和分类算法的比较,对基于心脏信号的身份识别方法的可行性进行研究和探讨。
其他文献
无线网络利用开放性的无线信道传输数据,因此容易遭受设备假冒攻击和通信数据伪造攻击,而防范此类攻击需要精准的设备识别.基于信道状态信息(channel state information,CSI)指纹的设备识别技术利用无线信道特征来识别设备.由于CSI提供细粒度的信道特征,并且可以从OFDM无线设备中轻松获取,因此该技术受到广泛的关注.但是反映无线信道特征的CSI指纹会随着终端的位置和所处环境的改变而改变,并且现有技术通常将机器学习用于指纹匹配以追求高识别准确率,随之而来的高计算复杂度使其无法在计算能力有限
提出基于蛋白质长度信息和深度卷积神经网络分类建模的方法(Length Information and Deep Convolutional Neural Networks, LIM-DCNN),实现对于蛋白质二级结构的预测。实验得到的6分段模型,预测CASP9、CASP10、CASP11、CASP12和CB513的Q_3准确率分别为83.67%、78.99%、78.53%、71.52%和85.94
微服务架构可以实现有效的可扩展性、资源隔离和容错隔离,但同时存在级联故障。级联故障由大量微服务间的关联性导致,一旦发生会导致全局性能下降甚至系统崩溃。对此提出一套故障预测方法。在服务网格架构中嵌入级联故障预测组件,对微服务运行的健康程度及微服务间的资源依赖关系进行建模,以获取级联故障参数,并带入GRU神经网络进行故障概率预测。完成了一个面向服务网格的运行时故障预测系统,并进行了仿真实验,验证了该故