论文部分内容阅读
多任务学习(MTL)未考虑先验概率对学习的影响.针对这一问题,文中提出基于衣物共现信息与多任务学习的衣物识别方法(CA-MLT),通过在MTL模型中加入先验约束项整合衣物共现信息,并对传统的扩展梯度算法进行相应的修改,从而提高衣物类别分类器的性能.实验表明,CA-MLT的平均性能优于单一任务学习、神经网络及传统的多任务学习等方法,训练结果便于可视化,可用于特征选择.