论文部分内容阅读
异常点检测在机器学习和数据挖掘领域中有着十分重要的作用。当前异常点检测算法的一大缺陷是正常数据在边缘处异常度较高,导致在某些情况下误判异常点。为了解决该问题,提出了一种新的基于邻域离散度的异常点检测算法。该算法将数据点所在邻域的离散度作为该数据点的异常度,既能有效避免边缘数据点的异常度过高,又能较好地区分正常点与异常点。实验结果表明,该算法能够有效地检测数据中的异常点,并且算法对参数选择不敏感,性能较为稳定。