论文部分内容阅读
模糊系统的独特优势在于其高度的可解释性,然而传统的基于聚类的模糊系统往往需要使用输入空间的全部特征且常出现模糊集交叉的现象,系统的可解释性不高;此外,此类模糊系统对高维数据处理时还会因使用大量的特征而使规则过于复杂.针对此问题,探讨了一种知识嵌入的贝叶斯MA型模糊系统(knowledge embedded Bayesian Mamdan-Assilan type fuzzy system,KE-B-MA).首先,KEB-MA使用DC(dont care)方法进行知识嵌入的模糊集划分,对模糊隶属度函数中心