论文部分内容阅读
机器学习技术已被广泛地应用在计算机辅助诊断中,以辅助专家进行医学诊断,但是几乎所有的分类器,都是默认的接收计算机的分类结果,而这种默认的结果在很多情况下会引起较大的误差。如根据诊断者的临床数据判断此人为病人的概率为50%,为健康人的概率也为50%,这时无论计算机将此人分类为健康人还是病人都会面临50%的错误概率。因此,提出嵌入拒识的极限学习机,不仅充分利用了极限学习机快速的学习能力、良好的泛化性能,而且通过嵌入拒识选项,"拒识"可靠性较低的样本来克服分类正确率较低的问题,使得自动分类过程更加可靠。实