论文部分内容阅读
Land consolidation (LC), as a type of human disturbance, improves land production efficiency and changes landscape distribution through land parcel reallocation. The objective of this study was to comparatively analyze the changes of landscape patches before and after a land consolidation project (LCP) and the effects of land levelling, irrigation and drainage work and road engineering on the landscape structure. FRAGSTAT3.3 and buffer zone analysis were used to investigate those changes. The results suggest that the heterogeneity of landscape depressed, and tended to simplification after LC. Dry land was the most highly variable land use pattern, and the change of forestland was least due to its locations at a gradient larger than 25°. LC resulted in a more rational use of land, and could be an important step in promoting rural development in depressed and fragmented agricultural areas through unused land exploitation, small-patch combination, irrigation and water conservancy, and road construction. Land levelling leveled off the gradient field surface and decreased the slope. The fragmentized patches were much more incorporated with increasing slope. On the other hand, the ridge of a field became longer so that the length of field surface and area of patch were increased. Land levelling regulated, simplified and combined patches, so that the complexity degree was reduced. It is found that the buffer distance of 35 m was a turning point of human disturbance by irrigation and drainage systems, and patches presented flaky distribution when the buffer distance was smaller than 35 m. Meanwhile, the distance range between 25 m to 50 m was an impressible area for road engineering, which was sensitive to human actions, and the changes of all landscape metrics were larger than those in other buffer zones. In general, LC not only reallocated fragmented parcels, but also improved agricultural conditions.