论文部分内容阅读
近年来利用近红外光谱进行农作物品种判别成为农产品检测的一个新兴方向。该文提出一种基于近红外光谱的新的实用化商品玉米品种判别系统,此系统既能对系统学习过的品种做出准确判别也能对未学习过的品种做出准确拒识。首先采用一阶导数法对原始光谱进行预处理,光谱数据经主成分分析后,根据仿生模式识别理论建立判别模型。在建立模型时文章使用了基于二维单形的Ψ-3神经元作为覆盖单元,并提出了包含指数的概念以辅助判定样品的唯一归属。测试结果表明,该系统对参与建模的品种有较强的判别能力,即使建模品种达到34个时系统平均正确判别率仍达