论文部分内容阅读
针对现有渐进网格(PM)简化算法在网格高度简化时无法保持模型关键特征、简化速度慢、无法适应多种模型等问题,提出一种以可变参数结合二次误差和类曲率特征度的边折叠算法(QFVP),用于构建面向移动端的渐进网格。首先,该算法通过设置可变参数w,调整二次误差和类曲率特征度在边折叠误差中的相对大小,提升了算法的简化质量,扩大了算法的适用范围;其次,训练了一个误差反向传播(BP)神经网络,用于确定模型w值;再次,提出了边折叠过程中法向量线性估算法,提高算法简化速度,与Gouraud估算法相比,平均缩短网格简化时