论文部分内容阅读
在一个数据集中,至少有一个类别相对与其他类别有很少的样本,则这样数据集可以称为高度倾斜的或者是非平衡的数据集。非平衡数据在现实中普遍存在。在非平衡数据分类中,传统机器学习算法的分类表现受到了阻碍。支持向量机(SVM)基于结构风险最小化原则,是近几年发展起来的机器学习方法。分析了SVM在非平衡数据集中的应用情况,同时提出了几种SVM运用于非平衡数据集中的主要改进方法,这些方法对于非平衡数据的分类有很好的分类效果。