论文部分内容阅读
研究多层混沌神经网络及其在交通量预测中的应用问题。以BP网络和混沌理论为基础,提出了一种在隐层中包含混沌神经元的多层混沌神经网络。XOR问题实验得出:该混沌神经网络能有效地强化网络的非线性和学习效率。鉴于城市交通流具有明显的混沌特性,将该混沌神经网络应用于城市交通流的预测。对广东江门市某路口交通量的预测结果显示出:采用该混沌神经网络,预测误差一般可以控制在10%以下(或左右)。该网络还可以应用于其他混沌系统的预测和控制。