论文部分内容阅读
KNN算法是一种应用广泛的人工智能算法,在文本分类应用中,简单有效,易于实现.但是,KNN分类的时间复杂度与训练样本数量成正比,而且,训练样本分布密度的不均匀性将导致分类准确性的下降.本文在KNN算法的基础上,提出一种改进算法.算法分析了训练样本的分布密度,通过裁减高密度区域训练样本,降低样本数量,调节训练样本分布,达到提高分类准确性的目的.实验证明,基于密度的改进KNN文本分类算法在降低时间复杂度的同时,还具有较好的准确率和召回率.