界面限域效应增强二氧化碳电催化还原

来源 :物理化学学报 | 被引量 : 0次 | 上传用户:liwang0113
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二氧化碳电催化还原,以可再生电能或富余核电等洁净电能为能源,可以在温和的反应条件下将二氧化碳一步转化为一氧化碳、甲酸、碳氢化合物和醇类等高附加值化工原料及化学品,将二氧化碳“变废为宝”的同时实现了洁净电能的有效存储。。当前,设计高效电催化剂来降低过电势和提高反应选择性是二氧化碳电催化还原研究中极具挑战性的热点课题。
其他文献
金属单原子物种的可控制备对于包括多相催化在内的各种表面化学过程非常重要。在本工作中,我们在Au(111)表面制备了由蜜勒胺分子形成的具有周期性孔道结构的自组装薄膜。这种
光电催化分解水系统能直接将收集的电子与空穴用于分解水,将太阳能转化成了具有高能量密度的氢气,是一种集太阳能转化和储存于一体的高效绿色能源系统。光阴极和光阳极串联要求
喹喔啉衍生物由于合成简单,易功能化,成本较低等特点在众多领域都有广泛应用。其自身具有平面刚性结构,也是构建光电聚合物的重要单体。基于喹喔啉单元的有机分子化学结构和
结冰是自然界中常见的相变过程。近地面的冰晶能够为诸多化学反应提供必要的反应界面与反应载体,进而深刻影响地表环境变化与地质结构变迁。结冰同时也是生命、大气、海洋、
氢被认为是环境友好的清洁能源,电催化分解水可以制备高纯氢气,据分析在碱性介质中电解水是最有可能实现产业化制氢的技术。一直以来贵金属都是该领域活性最高的催化剂,
空穴注入层对有机发光二极管的性能有重要的影响,尤其是当器件中的空穴传输材料的最高占据分子轨道能级较深的时候。近年来有许多关于新型的溶液法空穴注入材料的研究。在本
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5,6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三
已有研究普遍认为铅离子(Pb^2+)诱导富G适体链形成的G-四链体(Pb2+-G4)比钾离子(K^+)诱导富G适体链形成的G-四链体(K+-G4)更为稳定,因而Pb2+可以置换K^+-G4中的K^+,而且K^+的
赤铁矿(α-Fe2O3)型氧化铁具有独特的光学、电学、和电磁学性质,在化学传感器、锂离子电池、超级电容、雷达吸波和光解水制氢等领域有着广泛的应用潜力。
表面反应,即在固体表面发生的化学反应,一直是化学学科的研究焦点。近年来,人们借助扫描隧道显微镜(STM)等表面分析技术,在表面上成功实现大量的有机反应如Uilmann偶联、Glaser偶联