论文部分内容阅读
提出一种从训练样本提取基于超盒表示的模糊规则的方法,用于模式分类.这种方法把模式空间划分成模糊超盒,作为模糊规则的前件,规则的后件是相应的类别名称,同时给出每一条模糊规则的置信度.模糊分类规则从训练样本通过学习算法提取.规则提取方法可以分为,对于单个训练模式进行规则前件和后件的局部在线学习,和对于全部训练模式进行循环学习.实验显示规则提取的过程,说明通过这种方法能够获得有效的模式分类规则.