论文部分内容阅读
基于欧式距离的K-均值聚类算法是一种硬分类(把每个待辨识的对象严格地划分到某个类中)方法,面对具有不确定性和混合像元特征的遥感图像数据,传统K-均值聚类算法很难得到满意的分类结果。为解决这一难题,将集对分析(set pair analysis,SPA)理论推广到遥感图像聚类算法,通过引入一个能统一描述同一性、差异性和对立性的同异反(identical discrepancy contrary,IDC)联系度,提出了基于IDC联系度的改进的K-均值聚类算法。该方法克服了传统K-均值算法硬分类的缺陷,可