论文部分内容阅读
车辆的移动是受人意识控制的,有规律的移动,通过对车辆已知轨迹数据的分析,建立历史轨迹模型,可以实现对其未来轨迹的预测。采集了大量真实的车辆轨迹数据,通过计算信息熵分析车辆运动的规律性,为预测车辆轨迹提供依据。根据车载自组织网络的特殊应用场景以及车辆移动的规律性,利用车辆轨迹的历史数据构建状态转移矩阵,提出了基于马尔科夫链的车辆轨迹预测方法,仿真结果表明,该方法可以实现对车辆轨迹的有效预测。对影响预测精度的一些因素进行了对比分析。