Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte:Sintering, microstructure, perfo

来源 :能源化学 | 被引量 : 0次 | 上传用户:ZHY19641030
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Cubic phase Li7La3Zr2O12 (LLZO),a member of the Li-Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired (<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO-MgO composite ceramics.By sintering at 1150℃ for 5h,the ceramics can reach relative density of 98.2%,conductivity of 5.17 × 10-4 S cm-1 at 25 ℃ and fracture strength of ~150MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75-0.95 mA cm-2 at room temperature in Li-Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics.
其他文献
Micro-nano structured LiFe1-xMnxPO4/C (0 ≤ x ≤ 0.05) cathodes were prepared by spray drying,followed by calcination at 700℃.The spherical LiFe1-xMnxPO4/C (0≤ x≤0.05) particles with the size of 0.5 to 5.0μm are composed of lots of nanoparticles of 20 to 30
Perovskite solar cells (PSCs) based on methylammonium lead iodide (CH3NH3PbI3) have shown unprecedentedly outstanding performance in the recent years.Nevertheless,due to the weak interaction between polar CH3NH3 + (MA+) and inorganic PbI3-sublattices,CH3N
Hydrogen production from formic acid decomposition (FAD) is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and el
The development of high-performance electrocatalysts holds the decisive key to the electrochemical CO2 reduction toward value-added products.Formic acid or formate is a desirable reduction product,but its selective production is often challenging.Tin base
An OH--slow-release strategy was established to controllably tune the (α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride.Ammonium chloride is added to the ionic solution to regulate the pH of the solution and slow down
It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium. The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction (ORR) is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline med
With the increasing demand for large-scale battery systems in electric vehicles (EVs) and smart renewable energy grids,organic materials including small molecules and polymers utilized as electrodes in rechargeable batteries have received increasing attra
The uniformly dispersed transition metal (Co,Ni and Fe) nanoparticles supported on the surface of La-promoted MgO were prepared via a deposition-precipitation method for hydrogen production from catalytic decomposition of ammonia.X-ray diffraction,N2 adso
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2∶2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to