论文部分内容阅读
Ti60(Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining(ECM) is a promising technique that has several advantages, such as a high machining rate, and can be used on a wide range of difficult-to-process materials. In this paper, orthogonal experiments are conducted to investigate ECM of Ti60, with the aim of determining the influences of some electrochemical process parameters on the surface roughness. The most important parameter is found to be the frequency of the pulsed power supply. It is found that using suitably optimized parameters for ECM can greatly decrease the surface roughness of a workpiece. A surface roughness of approximately 0.912 lm can be obtained with the following optimal parameters: Na Cl electrolyte concentration 13wt%, voltage20 V, pulse frequency 0.4 k Hz, duty cycle 0.3, temperature 23 °C, and anode feed rate 0.5 mm/min.Furthermore, blisk blades have been successfully processed using these optimized parameters.
Ti60 (Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd) is a high-temperature titanium alloy that is now used for important components of aircraft engines. Electrochemical machining (ECM) is a promising technique that has several advantages, such as a high range of of difficult-to-process materials. In this paper, orthogonal experiments are conducted to investigate ECM of Ti60, with the aim of determining the influences of some electrochemical process parameters on the surface roughness. The most important parameter is found to be the frequency of the pulsed power supply. It is found that using reduced optimized parameters for ECM can greatly decrease the surface roughness of a workpiece. A surface roughness of approximately 0.912 lm can The obtained optimal parameters were Na Cl electrolyte concentration 13 wt%, voltage 20 V, pulse frequency 0.4 k Hz, duty cycle 0.3, temperature 23 ° C, and anode feed rate 0.5 mm / min. blades have been successfully processed using these optimized parameters.