论文部分内容阅读
列控车载设备的健康管理和故障预测是实现高速铁路关键装备智能化视情维护的重要途径.为了克服列控车载设备故障建模的复杂性和健康监测手段受限等问题,充分运用现场收集的设备运行记录数据,提出一种基于数据驱动的列控车载设备故障预测体系框架.建立了高速列车列控车载设备运行数据管理平台,基于大量历史现场数据构建训练及测试样本集,运用极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法实施特定故障类型的模型训练与学习,并将所得故障模型用于故障概率的预测分析.以CTCS2-200H型列控车