论文部分内容阅读
针对短波复杂信道环境下的跳频信号参数估计问题,提出了一种基于图像处理的跳频信号参数盲估计算法。该算法在时频分析的基础上采用灰度共生矩阵提取信号的纹理特征,通过对纹理特征量的分割实现信号与背景噪声的分割,并运用形态学滤波去除二值化后产生的椒盐噪声;然后根据连通区域标记得到的各个信号在时频图中的位置信息来聚类,从而去除定频、突发等干扰信号,分选出跳频信号;最后根据分选出的跳频信号提取其跳频频线并进行修正,估计出跳频信号的跳周期、跳变时刻和跳频频率。仿真实验表明,该算法切实有效,能够在较低的信噪比条件下精