论文部分内容阅读
噪声鲁棒性是影响话者确认系统实用化的关键问题之一,为了提高系统的噪声鲁棒性,本文设计了一种基于子带隐Markov模型(HMM)和多层感知机(MLP)的话者确认系统,系统由多个子带系统所构成,对每个子带分别建立基于背景模型的连续HMM话者确认模型,采用MLP对各个子带HMM的输出进行非线性拟合,并利用MLP直接做确认判决.在与文本有关的话者确认实验中,本文提出的模型较常规基于背景模型的HMM话者模型在确认性能和噪声鲁棒性上均有所提高,实验进一步表明,利用MLP进行拟合和判决在一定程度上解决了话者确认阈值设置