论文部分内容阅读
针对基于马尔可夫模型在真实时间上进行位置预测时,需要通过对时间进行等值划分来确定位置转移时间点,从而导致预测结果粗糙的问题,提出一种基于高斯分析的马尔可夫位置预测方法。该方法首先利用高斯混合模型拟合连续时间下地点之间的转移概率,从而发现可能的位置转移时间点,并将这些时间点作为马尔可夫模型的状态转移点,建立马尔可夫模型;然后通过用户在这些时间点的转移概率流向,计算用户位于某一位置的概率值,从而得到最终的位置预测结果。在数据集G-eoLife上的实验结果表明,该方法相对于传统马尔可夫模型和高斯混合模型的预测准