论文部分内容阅读
曲线拟合是实验数据处理的基本方法之一,该文借助LabVIEW8.6软件,通过图示和最小二乘原理,对文献报到的γ-c曲线模型和非线性参数优化方法进行了比较。并对曲线拟合的思路和方法进行了讨论。数值试验结果表明在实验数据处理中,拟合模型的选择是非常重要的,不适合的模型即使具有最优参数也不能用来估计系统的状态行为。通过全面的比较,得出在表面张力实验数据处理中,希斯科夫经验公式是γ-c曲线拟合的最佳模型,并提出了用Levenberg-Marquardt算法优化模型中的参数,得到较好的结果。
Curve fitting is one of the basic methods of experimental data processing. By means of LabVIEW8.6 software, this paper compares the γ-c curve model reported in the literature with the nonlinear parameter optimization method through the graphical and least-squares principle. The ideas and methods of curve fitting are also discussed. The numerical results show that in the experimental data processing, the choice of fitting model is very important. The unsuitable model can not be used to estimate the state behavior of the system even with the optimal parameters. Through comprehensive comparison, it is concluded that the empirical formula of Hyskow is the best model of γ-c curve fitting in the experimental data processing of surface tension, and the parameters in the model are optimized by using the Levenberg-Marquardt algorithm. the result of.