论文部分内容阅读
为改善软测量模型精度,提出了一种局部惩罚加权核偏最小二乘算法。该方法通过核映射将原始输入映射到高维特征空间实现对非线性问题的线性化处理,并通过偏最小二乘算法进行主成分提取,降低数据维数;对由主成分构成的新数据集,依据局部学习思想构建局部惩罚加权最小二乘回归模型,降低模型对异常数据的敏感度、优化模型参数。鉴于多模型可以改善模型估计精度,提高泛化性,采用C-NN近邻扩张搜索聚类算法对样本集进行聚类,对得到的聚类子簇依据上述算法建立回归子模型,得到多模型软测量系统。将其应用于双酚A生产过程的质量指标软测量