论文部分内容阅读
【摘要】 数学本身具有的应用价值、文化价值和智力价值,确立了它在学校课程中总是占据重要地位。数学学习已成为中小学学生人人面对的一项重要活动。因此,认识数学学习、数学课程的内涵及彼此的关系,显得极为重要。
【关键词】 数学学习;新课程
一、关于数学学习
人类的数学学习活动,从最初的结绳记数等自然经验的积累,演变成以班级授课形式为主的学校数学教育,已有数千年历史。然而,关于数学学习的基本理论的研究,诸如数学学习的实质是什么?数学学习有何特点?学生在其学习过程中表现出哪些心理规律?影响学生数学学习的因素分析等等,并没有形成一种共识,亟待更深入地研究和探索。
1、数学学习的实质。
数学学习的实质,牵涉到两个更为重要的问题:一是数学学习的对象——数学的本质是什么?二是数学学习作为一类学习活动——学习的实质是什么?前一个问题,是数学哲学的元问题,有着许多不同观点。如“纯数学的对象是现实世界的空间形式和数量关系”,“数学研究现实世界和人类经验各方面的各种形式模型的构造”,“数学是研究广义的量(即模式结构形式)的学科”等等。对数学本质的不同认识,形成了各种数学哲学流派,由于所持哲学立场各异,各派没有形成共识的迹象。随着认识的不断深化,人们看到尽管数学强调严密,但只是一种相对真理,大部分内容仅仅满足了逻辑合理性,与现实真理性有很大距离。
2、数学学习的特点。
数学自身的特点,决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。中小学学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色。
上述认识表明,中小学学生的数学学习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。
二、关于数学课程
我认为,数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。
美国课程论专家泰勒认为,教育的本来课题,不是教授者完成某种活动,而是要在学生的行为中引起某种重要的变化。数学课程建设为教师达到这一目标提供基本方案和依据,因而它对学生数学学习的质量、水平有着决定性意义。
制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。如果从中小学数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。因此,在满足社会需要的前提下,学生数学学习的实质、特点及所经历的心理规律等等,成为影响数学课程建设因素中的最根本因素。数学课程改革,必须认真对待学生的数学学习问题。
三、从数学学习看数学课程改革
1、数学课程改革的历史教训。
数学课程必须符合学生数学学习的特点、心理规律,实际上是数学课程的学生适切性问题,它与数学课程的社会适切性共同决定着数学课程改革的成败。如何使学生在数学学习中人格得以完善,又能兼顾社会的需要,看来“大众数学”强调素质教育的思想是比较合理的。在这一思想指导下,90年代西方发达国家都建立了各自的数学课程体系,将数学课程的社会适切性与学生适切性置于核心地位,尤其是后者,可以说达到空前的地步。
2、从数学学习看数学课程标准。
数学课程标准是对各个特定阶段(如初中、高中)学生数学学习目标的规定,它体现着数学教育的目标。这些规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,我国中学生在初中二年级是中学阶段思维发展的关键期,从初中二年级开始,他们的抽象逻辑思维开始由经验型水平向理论型水平转化,到高中二年级,这种转化初步完成,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。
参考文献
1 王子兴 等著.中学数学教育心理研究/中学教师继续教育丛书.湖南师范大学出版社2007.
2 李玉琪.数学教育概论[M].北京:中国科学技术出版社,1999.
3 莫里斯•克莱因.古今数学思想.上海科学技术出版社.2002.
4 王池富 编.中学数学思维与思想方法.湖北教育出版社.2008.
【关键词】 数学学习;新课程
一、关于数学学习
人类的数学学习活动,从最初的结绳记数等自然经验的积累,演变成以班级授课形式为主的学校数学教育,已有数千年历史。然而,关于数学学习的基本理论的研究,诸如数学学习的实质是什么?数学学习有何特点?学生在其学习过程中表现出哪些心理规律?影响学生数学学习的因素分析等等,并没有形成一种共识,亟待更深入地研究和探索。
1、数学学习的实质。
数学学习的实质,牵涉到两个更为重要的问题:一是数学学习的对象——数学的本质是什么?二是数学学习作为一类学习活动——学习的实质是什么?前一个问题,是数学哲学的元问题,有着许多不同观点。如“纯数学的对象是现实世界的空间形式和数量关系”,“数学研究现实世界和人类经验各方面的各种形式模型的构造”,“数学是研究广义的量(即模式结构形式)的学科”等等。对数学本质的不同认识,形成了各种数学哲学流派,由于所持哲学立场各异,各派没有形成共识的迹象。随着认识的不断深化,人们看到尽管数学强调严密,但只是一种相对真理,大部分内容仅仅满足了逻辑合理性,与现实真理性有很大距离。
2、数学学习的特点。
数学自身的特点,决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。中小学学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色。
上述认识表明,中小学学生的数学学习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。
二、关于数学课程
我认为,数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。
美国课程论专家泰勒认为,教育的本来课题,不是教授者完成某种活动,而是要在学生的行为中引起某种重要的变化。数学课程建设为教师达到这一目标提供基本方案和依据,因而它对学生数学学习的质量、水平有着决定性意义。
制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。如果从中小学数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。因此,在满足社会需要的前提下,学生数学学习的实质、特点及所经历的心理规律等等,成为影响数学课程建设因素中的最根本因素。数学课程改革,必须认真对待学生的数学学习问题。
三、从数学学习看数学课程改革
1、数学课程改革的历史教训。
数学课程必须符合学生数学学习的特点、心理规律,实际上是数学课程的学生适切性问题,它与数学课程的社会适切性共同决定着数学课程改革的成败。如何使学生在数学学习中人格得以完善,又能兼顾社会的需要,看来“大众数学”强调素质教育的思想是比较合理的。在这一思想指导下,90年代西方发达国家都建立了各自的数学课程体系,将数学课程的社会适切性与学生适切性置于核心地位,尤其是后者,可以说达到空前的地步。
2、从数学学习看数学课程标准。
数学课程标准是对各个特定阶段(如初中、高中)学生数学学习目标的规定,它体现着数学教育的目标。这些规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,我国中学生在初中二年级是中学阶段思维发展的关键期,从初中二年级开始,他们的抽象逻辑思维开始由经验型水平向理论型水平转化,到高中二年级,这种转化初步完成,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。
参考文献
1 王子兴 等著.中学数学教育心理研究/中学教师继续教育丛书.湖南师范大学出版社2007.
2 李玉琪.数学教育概论[M].北京:中国科学技术出版社,1999.
3 莫里斯•克莱因.古今数学思想.上海科学技术出版社.2002.
4 王池富 编.中学数学思维与思想方法.湖北教育出版社.2008.