论文部分内容阅读
以matlab为平台,分别应用BP神经网络和遗传算法优化的BP神经网络对再生沥青混合料的性能进行预测。以旧料掺量、油石比等8个影响因素作为输入层,以动稳定度、残留稳定度等5个性能指标作为输出层,将28组归一化处理后的试验数据进行神经网络的训练、验证和测试。结果表明:遗传算法优化的BP神经网络预测表现出更加精准的预测效果。将遗传算法优化的BP神经网络应用于工程实践中,再生沥青混合料性能预测可以大大提高试验科学性和预见性。