论文部分内容阅读
随着光网络规模的不断扩大,多维度可重构光分插复用器(ROADM)已成为下一代通信网络的关键节点技术。然而由于无阻塞的高维度交换矩阵的实现代价高,不对称的交换架构(即光节点内部存在不连通的端口)可能被广泛应用。为解决考虑端口连通性限制的路由与波长分配问题,建立了其整数线性规划(ILP)模型,并提出了3种考虑端口连通性(IPCA)的动态路由机制,包括基于K最短路(KSP)的IPCA(IPCA-KSP)机制、IPCA-Dijkstra机制与全路径搜索机制。仿真显示,全路径搜索机制采用枚举的方法可找到最短路径,但其阶乘量级的复杂度是无法容忍的。基于IPCA-SKP机制不能保证找到最短路径,且仅在小规模网络比较有效。而IPCA-Dijkstra机制通过修正经典Dijkstra算法的路径搜索过程,能够以较低的复杂度找到最短路径。
With the continuous expansion of optical networks, multi-dimensional reconfigurable optical add / drop multiplexer (ROADM) has become the key node technology of next generation communication networks. However, due to the high cost of non-blocking high-dimension switch fabric, the asymmetric switching fabric (that is, the non-connected ports inside the optical node) may be widely used. In order to solve the problem of routing and wavelength assignment, a new model of integer linear programming (ILP) is proposed and three kinds of dynamic route mechanisms considering Port Connectivity (IPCA) are proposed, including KSP (Shortest Route Based on K) IPCA (IPCA-KSP) mechanism, IPCA-Dijkstra mechanism and full path search mechanism. The simulation shows that the full path search mechanism can find the shortest path by using the enumeration method, but the complexity of order multiplication level can not be tolerated. Based on the IPCA-SKP mechanism, it is not guaranteed to find the shortest path and is only valid for small-scale networks. The IPCA-Dijkstra mechanism can find the shortest path with lower complexity by modifying the path search process of classical Dijkstra algorithm.