论文部分内容阅读
由于复杂装备运行工作环境恶劣,导致其轴承多重故障诊断的准确率不高,为此提出一种基于线性判别分析(LDA)与反向传播(BP)神经网络协作下复杂装备轴承数据驱动的多重故障诊断方法。将无量纲指标作为轴承多重故障数据的反映指标,利用LDA对轴承多重故障的无量纲指标数据进行线性映射降维处理;通过拉格朗日极值法获得最佳投影向量,沿着该方向将轴承多重故障数据投影到类别最易区分的方向;将经投影处理后的样本作为BP神经网络的输入样本,通过训练测试网络,实现轴承多重故障的预测分类。对某型装备大型旋转机械机组进行仿真实验,验证