论文部分内容阅读
Maize(Zea mays) root system architecture(RSA)mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study,a set of 204 recombinant inbred lines(RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 Chang7-2),genotyped by sequencing(GBS) and evaluated as seedlings for 24 RSA related traits divided into primary,seminal and total root classes. Signi ficant differences between the means of the parental phenotypes were detected for 18 traits,and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci(QTL) were identi fied that individually explained from1.6% to 11.6%(total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen,24 and 20 QTL were identi fied for primary,seminal and total root classes of traits,respectively. We found hotspots of 5,3,4 and 12 QTL in maize chromosome bins 2.06,3.02-03,9.02-04,and 9.05-06,respectively,implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.
Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant in lines (RILs) was derived from the most widely adapted Chinese hybrid ZD958 Chang7-2), genotyped by sequencing (GBS) and as as seedlings for 24 RSA related traits divided into primary, seminal and total root classes. Signi ficant differences between the means of the parental phenotypes were detected for 18 traits, and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci (QTL) were identi fied that individually explained from 1.6% to 11.6% (total root dry weight / total seedling shoot dry weight) of the phenotypic variation. Eighteen, 24 and 20 QTL were identi fied for primary, seminal and total root classes of traits, respectively. We found hotspots of 5,3,4 and 12 QTL in maize c These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.