论文部分内容阅读
针对矩阵数据降维或低秩逼近问题,提出了一种快速增量算法.假设矩阵数据存在双边分解,建立了两个相互耦合的特征子空间模型,因此增量算法由两个特征子空间的迭代更新构成.每一步迭代,新载入的矩阵数据沿着行(列)特征子空间进行正交分解,从而获得了行(列)协方差矩阵更紧致的表达.一旦该表达被建立,行(列)特征子空间的更新就可以通过解一个和矩阵数据的行(列)数相比更小规模的特征值问题来完成,算法的高效率得以实现.该算法被应用到人脸图像重构和人脸跟踪问题中,一系列实验表明了算法的有效性.