【摘 要】
:
根据场景图像中某些目标的特征间具有空间关联性和几何连贯性的空间语义属性,对特定场景的图像序列进行学习,首先提取各图像的尺度不变特征变换(SIFT)特征点,分析每对图像中各匹配特征点对间的几何连贯性,然后根据图像序列特征点矢量间的空间紧密程度进行聚类获得目标对象,从而得到基于空间关联性的一种新的图像语义层级结构(SBOSH),此层级结构图是通过非监督自动学习的过程获得的.由SBOSH结构图不仅可得到
论文部分内容阅读
根据场景图像中某些目标的特征间具有空间关联性和几何连贯性的空间语义属性,对特定场景的图像序列进行学习,首先提取各图像的尺度不变特征变换(SIFT)特征点,分析每对图像中各匹配特征点对间的几何连贯性,然后根据图像序列特征点矢量间的空间紧密程度进行聚类获得目标对象,从而得到基于空间关联性的一种新的图像语义层级结构(SBOSH),此层级结构图是通过非监督自动学习的过程获得的.由SBOSH结构图不仅可得到各节点上的目标对象,而且能够获得各节点间的空间交互性.所得的SBOSH结构图符合人对场景的逻辑分析,可以
其他文献
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency
谱聚类是一种以图和相似性为基础的聚类新算法.当图像很大时,计算相似性矩阵及其特征值和特征向量十分耗时.为了将谱聚类算法应用于大规模聚类问题,该文提出一种两阶段纹理图像分割算法,采用改进的分水岭算法进行预分割,然后用特征值尺度化特征multiway谱聚类算法进行最终分割.为了检验算法性能,将其应用于纹理图像分割,分割结果令人满意.
The purpose of image registration is to spatially align two or more single-modality images taken at different times, or several images acquired by multiple imaging modalities. Intensity-based registra
虽然基于像素重排列的迭代反投影算法已经在TOMBO模型构建时提出,但是该方法需要大量的迭代次数,同时在噪声平滑效果上还有待于改进.因此一种正则化的迭代反投影算法被提出为该系统重构图像.采用自适应的总变差正则化因子和双边总变差正则化因子来正则化迭代反投影算法.自适应总变差正则化因子根据图像的当前信息来选择参数,因此用该因子正则化后的迭代反投影算法可以在平滑噪声的同时保留高频成分.而双边总变差正则化因
In this paper, we used SVM method to detect P300 signal. Before training a classification parameter for the SVM, several preprocessing operations were applied to the data including filtering, downsamp
给出一种有监督检测算法以检测高光谱图像中的区域目标.为利用高光谱图像中的空间尺度维信息,在高光谱图像多尺度观测不同相连节点之间建立高维多尺度自回归模型,并利用四叉树节点间的多阶马尔可夫性和高维多尺度回归噪声先验概率密度与高维观测条件概率密度的等价性及其多元t分布特性,构造出适用于检测高光谱图像中区域目标的空间多尺度自回归有监督检测算法.理论分析及实验中的5种评价方法的结果均表明该检测器可有效检测出
The contourlet transform with anisotropy and directionality is a new extension to the wavelet transform.Because of its filter bank structure,the contourlet transform is not translation-invariant.In th
日本东京大学和日立公司联合研制出TransCAIP三维电视系统,并将正式生产投放市场。届时,用户不仅可以获得与直播现场几乎完全一样的逼真视觉感受,还可对电视节目进行直接的互动控制。
针对步态能量图(GEI)和图像序列的Radon变换可以表征图像能量的特点,提出这两种形式的能量特征相融合的方法进行身份识别.在周期分割后的特征提取阶段分别使用GEI结合行列相结合的二维主成分分析((2D)2PCA)方法和对步态序列图像进行Radon变换,在周期模板构造后用列方向的二维主成分分析(2DPCA)降维方法进行数据压缩.在识别阶段,采用多视角及多特征在决策层的融合方法.应用上述方法在CAS