论文部分内容阅读
为实时监控动态过程的运行状态,提出基于提升小波变换和最小二乘支持向量机(LSSVM)及BP神经网络(BPNN)相结合的在线智能监控模型。采用提升小波变换提取原始数据的重构特征,并分别抽取重构后数据序列的均值、形状特征。利用基于提升小波重构特征的LSSVM判定动态过程是否异常,基于重构后均值特征的BPNN将5种异常模式划分为3个类别。通过基于重构后形状特征的LSSVM对3类异常模式进一步识别。最后,应用该模型对某精密轴加工过程进行在线智能监控。结果表明,与基于离散小波重构的BPNN模型、基于统计和形状特征的