【摘 要】
:
在对称密码设计中,组件的设计是一个重要的问题.为了达到某种设计思想,需要选用满足某种性质或指标的组件.拟群运算由于易于求逆且具有很好的平衡性,所以作为结合运算或压缩变换,在密码算法的设计中具有广泛的应用.分组密码IDEA中,通过使用三个"不相容"的群运算达到了混乱的目的,其中的"不相容"主要是指这些群运算作为拟群运算的非合痕性.本文从Pappus定理的几何意义出发,在固定四条直线的情况下,给出了另
论文部分内容阅读
在对称密码设计中,组件的设计是一个重要的问题.为了达到某种设计思想,需要选用满足某种性质或指标的组件.拟群运算由于易于求逆且具有很好的平衡性,所以作为结合运算或压缩变换,在密码算法的设计中具有广泛的应用.分组密码IDEA中,通过使用三个"不相容"的群运算达到了混乱的目的,其中的"不相容"主要是指这些群运算作为拟群运算的非合痕性.本文从Pappus定理的几何意义出发,在固定四条直线的情况下,给出了另外两条直线的对应关系;并针对一个坐标分量,利用拉丁方截线扩张的方法,构造了一个可作为对称密码组件的拟群运
其他文献
本文对管道排水工程施工中常见的质量通病做了阐述,并简要地分析其原因.并提出有效的防治措施,供大家参考.
在我国的土建工程中,混凝土施工占有很大的比例.本文主要从混凝土的制备、运输、浇筑及养护等方面论述了土建工程的施工方法.
通过多年的现场观察,通过查阅有关混凝土内部应力方面的专著,对混凝土温度裂缝产生的原因、现场混凝土温度的控制和预防裂缝的措施进行等进行阐述.
基于Coppersmith方法,RSA密码分析取得了许多新结果,其中包括部分私钥泄露攻击与低解密指数攻击.现实中侧信道攻击能够泄露私钥的部分比特位,而部分私钥泄露攻击正是通过泄露的这些比特位来实现对RSA密码的破解.低解密指数攻击则是在解密指数取值较小的条件下来破解RSA,Boneh和Durfee给出了至今最好的结果.针对私钥最低几位比特泄露的攻击,是一类重要的部分私钥泄露攻击,并且和低解密指数攻
城市建设的不断发展,建筑的高层化趋势愈加明显,建筑间的日照关系愈加复杂,同时,民众的法律意识、维权意识也越来越强,对日照、身心健康等问题也越来越关注,对城市规划管理的
地震中由于建筑损毁而带来的严重人员伤亡,引起了大家对于自己所处的各种建筑抗震性的关注.作为地震中最威胁我们生命安全的建筑而言,什么结构的房屋比较抗震成了市民关注的
Bent函数的概念由Rothaus在1976年提出.因为Bent函数既是非线性度最优的布尔函数,又达到了一阶Reed-Muller码的覆盖半径,并且与Hadamard矩阵、差集等组合对象有紧密联系,所以其应用涉及密码、编码、组合数学等多个领域.对Bent函数的研究一直是热门方向,其中包含了大量的关于Bent函数构造的结果.除了布尔Bent函数,在不同的应用背景下还定义了Bent函数的各类推广形式,
近年来,初中音乐教 学中电化教学的应用,主要是对采用声光 设备而言:包括音响设备、声像设备等.它可以使抽象的知识形象化、微观的知识 宏观化、复杂的过程简明化,并有利
由于Feistel结构具有良好的密码学性质,它的变体——许多广义Feistel结构也成为密码算法设计者乐于选择的对象,其中由郑玉良等人设计的type-2和type-3广义Feistel结构被许多分组密码算法和密码杂凑函数所采用.所以,对这两种广义Feistel结构进行安全性分析非常必要.伪随机性是一个结构的重要安全性指标,而自2007年Knudsen和Rijmen提出了"已知密钥区分器"开始,利用