论文部分内容阅读
江泽民同志指出:“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”当今世界,经济飞速发展、科学技术突飞猛进、社会面貌日新月异、世界风云变幻莫测。针对这些新形势和新变化,就需要具有创新能力的人才。因此我们教师要为学生创新思想、探索精神的发展创造一种宽松和谐的氛围。在数学教学中,增强学生的创新意识,让学生自主地求知、自觉地实践,形成能力,有效地发展学生素质。下面谈点个人体会。
一、创设情境——唤起创新意识
古人曰:“学起于思,思源于疑。”疑是学习的起点,有疑才有问,有思、有究,也才能有所得。教学中,教师可创设情境,精心设计新颖有吸引力的问题,使他们积极思维,产生好奇心。
例如,教学“年、月、日”时,首先复习有关“时、分、秒”的知识,然后讲述趣题:小明今年9岁,他哥哥小青从出生到今年,只过了三个生日。请同学想一想,小青今年是几岁?有的学生顺口答出:“3岁。”但一想一不对,小明今年9岁了,怎么哥哥才3岁呢?大家疑云骤起,谁都想知道正确答案。就在这时,教师说:“通过这节课的学习,同学们一定会解答这个问题,到时看谁能正确地回答出来?”进而引导学生学习,通过比较、概括,学生自己终于学会了平年、闰年及相关知识。这样,一个比较抽象的数学概念,就使学生在好奇心的驱使下,通过能动的思索和分析,就迎刃而解了。
二、精心设问——增强创新意识
学生存在着不同的创新潜力,关键是教师如何引发。教师要为学生创造性思维的开发提供条件、创设情境,通过巧妙构思、精心设问,把学生置于发现者的位置,让学生随着问题的层层深入而激活思维去创新。
例如,教学“圆的周长”时,教师先提出:“你是怎样测量圆的周长的?“滚动的方法。”教师又提出了“圆形水池能立起来滚动吗?”“不能。”其中一名学生想出了用绳子绕一圈的方法。教师接着又提问:“这个小球所示的轨迹是个圆,它的周长能用绳绕法测量吗?”“不能”。在学生观察到圆的周长的长短与它的直径有关系的前提下,教师又提出“圆的周长到底与它的直径有什么关系呢?”让学生再次测量、观察、讨论,从而得出正确结论。层层的设问,激起学生思维的火花,为学生探索新知识创设了情境。
三、动手操作——培养创新意识
有一所学校的实验室的横幅上面写道:“我听见了,就忘了;我看见了,就记住了;我做了,就理解了。”现代教学强调:“要让学生动手做科学,而不是用耳朵听科学”。强调学生动手的重要性。因此我们一定要从小重视学生动手实践能力的培养。教学中多让学生拼一拼、摆一摆、量一量、折一折、剪一剪、画一画、想一想、说一说,给学生提供尽可能多的动手、动脑、动口的机会,为创新能力的培养创造条件。
例如:教学“圆锥体积”,这是在学生已经掌握了圆柱体的体积基础上学习的。课前,学生分别准备了一个等底等高的圆柱体容器和圆锥体容器。然后让学生动手操作:把圆锥容器装满沙倒进空的圆柱容器里,这样倒了三次,正好装满了这个圆柱容器。同学们从中发现圆柱体的体积是圆锥体体积的3倍。而圆锥体的体积是圆柱体体积的三分之一。圆柱体的体积公式学生已经掌握是V=Sh,所以学生很快就推导出圆锥体的体积是V=1/3Sh。这样,一方面通过操作使学生理解了圆锥体的体积公式的实际含义;另一方面培养了学生的创新意识和创新能力。
四、引导联想——培养创新能力
儿童时代是想象力最丰富、最活跃的时期,儿童愿意去探索、去发现各种事物。通过想象和联想,可以开拓学生的思路,增强学生思维的深刻性,有利于培养学生思维的灵活性。
如:教学“有余数的除法”一节时,学生在掌握了有余数除法的各部分之间关系——“被除数=高×除数+余数”后,教材中又提出“想一想,有余数的除法,除了上面讲的验算方法外,还有别的验算方法吗?”学生独立思考后说出了“(被除数—余数)÷除数=商”等7种验算方法,明确了验算有余数除法的关键是处理好余数,搞清了被除数与除数、商、余数之间的关系。教师要充分利用教材中普遍存在的类似创新教育素材,培养学生的创新能力。
五、求异训练——优化创新能力
数学课上教师要引导学生打破常规思维束缚,凭借自己的智慧和能力积极地从不同角度去思考问题,设计一些一题多问、一题多变、一题多解练习,引导学生优化创新思维能力。
例如,教学“百分数应用题”时,我找出了这样一道题:“某队修一条长200千米的公路,前5天修了25%,照这样的速度,修完这条公路还要几天?”让学生用多种方法解答。一般学生的做法是:方法一:(200-200×25%)÷(200×25%÷5);方法二:200÷(200×25%÷5)—5。老师提出:还有别的解法吗?思维水平比较好的学生将本题与工程问题联系起来,抛开200千米这个条件,将整个工程看作单位 “1”,列出:1÷(25%÷5)—5或(1—25%)÷(25%÷5)。这时学生思维处于高度活跃状态,老师趁机推波助澜:能不能再和其他类型应用题解题思路联系起来呢?有的学生将其与倍比问题的解联系起来,解法为:5×[(1—25%)÷25%]。根据已知一个数的百分之几是多少,求这个数的解题思路列式为5÷25%—5。可见,求异思维训练是学生掌握知识、形成技能、发展能力的有效手段。教师引导学生学会变异、转化、代换、假设等方法,是指导学生发展创造力的有效途径之一。
总之,教育是培养人的创造性教育的最佳途径,而课堂教学是主渠道。作为课堂教学的主导者,要根据数学的特点和学生的实际,把握知识与创造能力培养的结合点,适时适度地引导,鼓励学生进行创造学习,生动、活泼、主动地发展自己的创造性素质。这样,学生的创新精神和创造能力就会在数学教学中得到培养和发展。
(作者单位:533817广西靖西县果乐乡和温小学)
一、创设情境——唤起创新意识
古人曰:“学起于思,思源于疑。”疑是学习的起点,有疑才有问,有思、有究,也才能有所得。教学中,教师可创设情境,精心设计新颖有吸引力的问题,使他们积极思维,产生好奇心。
例如,教学“年、月、日”时,首先复习有关“时、分、秒”的知识,然后讲述趣题:小明今年9岁,他哥哥小青从出生到今年,只过了三个生日。请同学想一想,小青今年是几岁?有的学生顺口答出:“3岁。”但一想一不对,小明今年9岁了,怎么哥哥才3岁呢?大家疑云骤起,谁都想知道正确答案。就在这时,教师说:“通过这节课的学习,同学们一定会解答这个问题,到时看谁能正确地回答出来?”进而引导学生学习,通过比较、概括,学生自己终于学会了平年、闰年及相关知识。这样,一个比较抽象的数学概念,就使学生在好奇心的驱使下,通过能动的思索和分析,就迎刃而解了。
二、精心设问——增强创新意识
学生存在着不同的创新潜力,关键是教师如何引发。教师要为学生创造性思维的开发提供条件、创设情境,通过巧妙构思、精心设问,把学生置于发现者的位置,让学生随着问题的层层深入而激活思维去创新。
例如,教学“圆的周长”时,教师先提出:“你是怎样测量圆的周长的?“滚动的方法。”教师又提出了“圆形水池能立起来滚动吗?”“不能。”其中一名学生想出了用绳子绕一圈的方法。教师接着又提问:“这个小球所示的轨迹是个圆,它的周长能用绳绕法测量吗?”“不能”。在学生观察到圆的周长的长短与它的直径有关系的前提下,教师又提出“圆的周长到底与它的直径有什么关系呢?”让学生再次测量、观察、讨论,从而得出正确结论。层层的设问,激起学生思维的火花,为学生探索新知识创设了情境。
三、动手操作——培养创新意识
有一所学校的实验室的横幅上面写道:“我听见了,就忘了;我看见了,就记住了;我做了,就理解了。”现代教学强调:“要让学生动手做科学,而不是用耳朵听科学”。强调学生动手的重要性。因此我们一定要从小重视学生动手实践能力的培养。教学中多让学生拼一拼、摆一摆、量一量、折一折、剪一剪、画一画、想一想、说一说,给学生提供尽可能多的动手、动脑、动口的机会,为创新能力的培养创造条件。
例如:教学“圆锥体积”,这是在学生已经掌握了圆柱体的体积基础上学习的。课前,学生分别准备了一个等底等高的圆柱体容器和圆锥体容器。然后让学生动手操作:把圆锥容器装满沙倒进空的圆柱容器里,这样倒了三次,正好装满了这个圆柱容器。同学们从中发现圆柱体的体积是圆锥体体积的3倍。而圆锥体的体积是圆柱体体积的三分之一。圆柱体的体积公式学生已经掌握是V=Sh,所以学生很快就推导出圆锥体的体积是V=1/3Sh。这样,一方面通过操作使学生理解了圆锥体的体积公式的实际含义;另一方面培养了学生的创新意识和创新能力。
四、引导联想——培养创新能力
儿童时代是想象力最丰富、最活跃的时期,儿童愿意去探索、去发现各种事物。通过想象和联想,可以开拓学生的思路,增强学生思维的深刻性,有利于培养学生思维的灵活性。
如:教学“有余数的除法”一节时,学生在掌握了有余数除法的各部分之间关系——“被除数=高×除数+余数”后,教材中又提出“想一想,有余数的除法,除了上面讲的验算方法外,还有别的验算方法吗?”学生独立思考后说出了“(被除数—余数)÷除数=商”等7种验算方法,明确了验算有余数除法的关键是处理好余数,搞清了被除数与除数、商、余数之间的关系。教师要充分利用教材中普遍存在的类似创新教育素材,培养学生的创新能力。
五、求异训练——优化创新能力
数学课上教师要引导学生打破常规思维束缚,凭借自己的智慧和能力积极地从不同角度去思考问题,设计一些一题多问、一题多变、一题多解练习,引导学生优化创新思维能力。
例如,教学“百分数应用题”时,我找出了这样一道题:“某队修一条长200千米的公路,前5天修了25%,照这样的速度,修完这条公路还要几天?”让学生用多种方法解答。一般学生的做法是:方法一:(200-200×25%)÷(200×25%÷5);方法二:200÷(200×25%÷5)—5。老师提出:还有别的解法吗?思维水平比较好的学生将本题与工程问题联系起来,抛开200千米这个条件,将整个工程看作单位 “1”,列出:1÷(25%÷5)—5或(1—25%)÷(25%÷5)。这时学生思维处于高度活跃状态,老师趁机推波助澜:能不能再和其他类型应用题解题思路联系起来呢?有的学生将其与倍比问题的解联系起来,解法为:5×[(1—25%)÷25%]。根据已知一个数的百分之几是多少,求这个数的解题思路列式为5÷25%—5。可见,求异思维训练是学生掌握知识、形成技能、发展能力的有效手段。教师引导学生学会变异、转化、代换、假设等方法,是指导学生发展创造力的有效途径之一。
总之,教育是培养人的创造性教育的最佳途径,而课堂教学是主渠道。作为课堂教学的主导者,要根据数学的特点和学生的实际,把握知识与创造能力培养的结合点,适时适度地引导,鼓励学生进行创造学习,生动、活泼、主动地发展自己的创造性素质。这样,学生的创新精神和创造能力就会在数学教学中得到培养和发展。
(作者单位:533817广西靖西县果乐乡和温小学)