论文部分内容阅读
目前性能较好的多分类算法有1-v-r支持向量机(SVM)、1-1-1SVM、DDAG SVM等,但存在大量不可分区域且训练时间较长的问题。提出一种基于二叉树的多分类SVM算法用于电子邮件的分类与过滤,通过构建二叉树将多分类转化为二值分类,算法采用先聚类再分类的思想,计算测试样本与子类中心的最大相似度和子类间的分离度,以构造决策节点的最优分类超平面。对于C类分类只需C-1个决策函数,从而可节省训练时间。实验表明,该算法得到了较高的查全率、查准率。