论文部分内容阅读
误码纠错是量子密钥分配后续数据处理过程的关键环节。基于奇偶监督矩阵码检错原理与级联纠错原理,提出了一种高效的级联纠错协议,并对协议的相关参数进行了理论优化分析。根据分析结果,利用仿真数据分别对单次级联纠错的纠错效率和纠错能力进行实验研究,得到不同初始误码率条件下的最优参数选择依据。利用优化的参数,对级联纠错协议的最终密钥生成效率进行了数据仿真分析。结果表明,当初始误码率分别为3、6和10%时,最终的密钥实际生成效率分别达到了77.67、63.21和46.82%。与理论值进行比较显示,本文协议的密钥生成效率接近理论效率的上限值。
Error correction is the key part of the subsequent data processing of quantum key distribution. Based on parity check matrix code error detection principle and cascade error correction principle, a highly efficient cascade error correction protocol is proposed and the parameters of the protocol are theoretically optimized. According to the analysis results, the error correction efficiency and the error correction ability of the single cascade error correction are experimentally studied respectively by using the simulation data, and the optimal parameter selection basis under different initial bit error rate conditions is obtained. Using the optimized parameters, the final key generation efficiency of cascaded error correction protocol was simulated. The results show that when the initial BER is 3, 6 and 10% respectively, the final key generation efficiency reaches 77.67, 63.21 and 46.82% respectively. The comparison with the theoretical value shows that the key generation efficiency of this protocol is close to the upper limit of theoretical efficiency.