论文部分内容阅读
为了克服传统物品推荐技术中存在的局限,提出了一种基于SURP(supervised user rating profile)模型的物品推荐方法.利用词包(BOW)的方法,以图像特征来表示物品;在此基础上,采用监督学习方法来建立SURP模型,提高了对物品评分等级预测的准确性;通过引入用户兴趣因子,解决了用户对已购买物品的兴趣变化问题.在自建的物品数据集上,对此方法、URP(user rating profile)模型、G-PLSA(Gaussian probabilistic latent seman