【摘 要】
:
目的图像的显著性目标检测是计算机视觉领域的重要研究课题。针对现有显著性目标检测结果存在的纹理细节刻画不明显和边缘轮廓显示不完整的问题,提出一种融合多特征与先验信息的显著性目标检测方法,该方法能够高效而全面地获取图像中的显著性区域。方法首先,提取图像感兴趣的点集,计算全局对比度图,利用贝叶斯方法融合凸包和全局对比度图获得对比度特征图。通过多尺度下的颜色直方图得到颜色空间图,根据信息熵定理计算最小信息
【机 构】
:
辽宁工程技术大学软件学院,葫芦岛,125105
论文部分内容阅读
目的图像的显著性目标检测是计算机视觉领域的重要研究课题。针对现有显著性目标检测结果存在的纹理细节刻画不明显和边缘轮廓显示不完整的问题,提出一种融合多特征与先验信息的显著性目标检测方法,该方法能够高效而全面地获取图像中的显著性区域。方法首先,提取图像感兴趣的点集,计算全局对比度图,利用贝叶斯方法融合凸包和全局对比度图获得对比度特征图。通过多尺度下的颜色直方图得到颜色空间图,根据信息熵定理计算最小信息熵,并将该尺度下的颜色空间图作为颜色特征图。通过反锐化掩模方法提高图像清晰度,利用局部二值算子(LBP)
其他文献
目的采用不同染色方法获得的周围神经标本经过MicroCT扫描后,会获得不同效果的神经断层扫描图像。本文针对饱和氯化钙染色、无染色方法获得的两种周围神经MicroCT图像,提出一种通用的方法,实现不同染色方法获得的周围神经MicroCT图像在统一架构下的神经束轮廓获取。方法首先设计通用方法架构,构建图像数据集,完成图像标注、分组等关键性的准备环节。然后将迁移学习算法与蒙皮区域卷积神经网络(mask
Organic-inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies.However,
目的基于超像素分割的显著物体检测模型在很多公开数据集上表现优异,但在实际场景应用时,超像素分割的数量和大小难以自适应图像和目标大小的变化,从而使性能下降,且分割过多会耗时过大。为解决这一问题,本文提出基于布尔图和灰度稀缺性的小目标显著性检测方法。方法利用布尔图的思想,提取图像中较为突出的闭合区域,根据闭合区域的大小赋予其显著值,形成一幅显著图;利用灰度稀缺性,为图像中的稀缺灰度值赋予高显著值,抑制
稻田生态系统是一种需要人工干预的开放系统,其多样性较低,营养结构简单,空白生态位较多,本身具有一定的脆弱性,加之近年来耕作方式的转变,农药化肥的不合理使用等,使其脆弱
目的在文档图像版面分析上,主流的深度学习方法克服了传统方法的缺点,能够同时实现文档版面的区域定位与分类,但大多需要复杂的预处理过程,模型结构复杂。此外,文档图像数据不足的问题导致文档图像版面分析无法在通用的深度学习模型上取得较好的性能。针对上述问题,提出一种多特征融合卷积神经网络的深度学习方法。方法首先,采用不同大小的卷积核并行对输入图像进行特征提取,接着将卷积后的特征图进行融合,组成特征融合模块
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度
分析了数控机床故障的特征,简述了诊断其故障的方法,探讨了今后将要开展研究和应用的一些新理论和新方法。
The characteristics of NC machine tool failures are analyzed.
目的 随着城市交通拥堵问题的日益严重,建立有效的道路拥堵可视化系统,对智慧城市建设起着重要作用.针对目前基于车辆密度分析法、车速判定法、行驶时间判定法等模式单一,可
目的基于数字水印技术的音乐作品版权保护是学术界的研究热点之一,多数数字音频水印方案仅仅能够对抗简单的常规信号处理,无法有效抵抗破坏性较强的一般性去同步攻击。为此,提出了一种基于稳健局部特征的非下采样小波域数字水印算法。方法利用非下采样小波域平滑梯度检测算子从载体音频中提取稳定的音频特征点,结合数字音频样本响应确定局部特征音频段,采用量化调制策略将数字水印信号重复嵌入局部特征音频段中。结果选取4段典
目的图像因各种因素的影响存在一定程度的噪声,而噪声会在图像分割时影响待分割目标的边缘识别,导致分割结果难以达到理想状态。针对以上问题,在距离规则化水平集(DRLSE)演化模型的基础上,提出一种将各向异性扩散散度场信息融合到DRLSE模型中的新模型。方法将水平集函数初始化为分段常数表达式,设定演化方程中的参数和水平集函数演化过程中的迭代时间步长Δt。随后将常值权系数α替换为融合各项异性扩散散度场信息