基于双域分解的多尺度深度学习单幅图像去雾

来源 :光学学报 | 被引量 : 15次 | 上传用户:laogong90
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统单幅图像去雾算法容易受到雾图先验信息制约而导致颜色失真,以及现有深度学习去雾算法受网络模型限制而存在去雾残留等问题,提出了一种基于双域分解的多尺度深度学习单幅图像去雾方法,设计了一个包含低频去雾子网和高频去雾子网的多尺度深度学习网络模型。首先采用双边滤波器对有雾图像进行分解,得到雾图的高、低频子图,然后通过设计的网络模型分别学习雾图高、低频子图与高、低频透射率之间的映射关系,再将模型学习得到的高、低频透射率进行融合,得到原始雾图对应的场景透射率图,最后根据大气散射模型实现有雾图像到无雾图像的
其他文献