论文部分内容阅读
缺失样本的存在会造成GPS时间序列速度估计的不确定性,从而影响GPS时间序列的应用。针对该问题本文提出一种基于高斯模型的样本缺失GPS时间序列重构方法,首先利用高斯概率密度函数对GPS时间序列的先验分布进行建模,在此基础上构建全概率贝叶斯统计模型,采用期望最大(Expectation Maximization,EM)算法对模型参数(隐变量)进行迭代更新并计算其最大似然估计值,最终完成信号重构。分别对随机缺失和分段连续缺失两种情况进行实验分析,结果表明所提方法相对于传统插值方法可以获得更好的重构性能。