论文部分内容阅读
针对复杂的视频场景中目标追踪易受环境干扰的问题,提出了一种基于混合高斯模型和改进的C-V(Chan-Vese)模型相结合的新方法。其中采用了混合高斯模型算法更新背景,检测出运动目标轮廓。然后对提取出的目标轮廓进行后处理,标定出运动目标的质心和运动区域。将运动区域作为初始化曲线,用改进的C-V模型对运动目标进行拟合。结果证明了以标定出的运动目标区域为初始化曲线可以有效地提高轮廓曲线的收敛速度;对于灰度不均匀的和含有噪声的图像,改进的模型的分割效果也要好于C-V模型和LCV模型。