急性脑卒中机械取栓术后出血转化风险的列线图模型构建

来源 :磁共振成像 | 被引量 : 0次 | 上传用户:jcx88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的 基于多模态磁共振影像组学及临床危险因素构建急性脑卒中机械取栓术后出血转化的列线图模型.材料与方法 回顾性分析2017年1月至2020年12月在南京市第一医院就诊的急性缺血性脑卒中患者病例174例,将患者病例随机分为训练集(n=122)和测试集(n=52),根据治疗后24 h的磁共振图像将患者分成出血转化组和无出血转化组.采用A.K.软件提取弥散加权成像及灌注加权成像病变区影像组学特征并构建影像组学标签.通过多变量Logistic回归筛选最佳预测因子并构建列线图模型.利用受试者操作特征(receiver operating characteristic,ROC)曲线评估模型预测效能.结果每例患者各提取1584个影像组学特征,降维后筛选出15个与卒中出血转化高度相关的特征.ROC曲线显示联合影像组学标签、房颤史、年龄及入院NIHSS评分构建的诺莫图模型预测训练集出血转化的曲线下面积(area under the curve,AUC)为0.979(敏感度和特异度分别为0.950、0.989),预测测试集出血转化AUC为0.885(敏感度和特异度分别为0.836、0.908),均优于单一影像组学模型(AUC=0.763)或临床特征模型(AUC=0.707).结论 多模态磁共振联合临床特征的影像组学和机器学习可以预测急性脑卒中动脉取栓术后出血转化,且具有较高的可靠性.
其他文献
目的 探究联合临床因素的肝细胞癌(hepatocellular carcinoma,HCC)术前MR影像组学模型对预测HCC切除术后早期复发的价值.材料与方法 回顾性分析116例(训练集82例、测试集34例)术前进行过腹部MRI扫描且经病理确诊为HCC患者的动态对比增强MRI(dynamic contrast enhanced MRI,DCE-MRI)的图像和临床因素.运用3D Slicer软件勾画病变感兴趣区(region of interest,ROI)并提取影像组学特征,通过最大相关-最小冗余算法、