论文部分内容阅读
针对传统模糊C均值聚类算法(FCM)在图像分割时没有利用图像的空间信息而对噪声敏感、分割结果不够准确的问题,提出一种结合空间信息的FCM改进算法.该算法利用邻域像素间的灰度差异计算出邻域加权系数,并利用该系数对中心像素的隶属度进行更新,控制邻域像素对中心像素的不同影响;该算法还利用了快速FCM算法对图像进行初始分割.对MRI脑图像分割的实验结果表明FCM改进算法简单有效,具有较强的抗噪能力,能取得较好的图像分割结果.