补全图形求体积

来源 :中学生数学 | 被引量 : 0次 | 上传用户:wenwenan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
“补形法”是求几何体体积的常用方法之一,如果能够将所求几何体进行巧妙补形,不但能够使所补图形美感十足,而且可以迅速、快捷地求出体积.下面举例加以说明.例1 (2003年全国高考题)一个四面体的所有棱长都为2~(1/2),4个顶点在同一球面上,则此球的表面积为( ). “Complementary method” is one of the common methods for calculating the volume of a geometric volume. If you can subtly complement the geometry you are looking for, you can not only make the complement of the figure beautiful, but also quickly and quickly find the volume. Here are some examples. Explanation: Example 1 (National College Entrance Examination Question in 2003) All tetragonal prisms have a length of 2~(1/2) and 4 vertices on the same sphere. The surface area of ​​this sphere is ().
其他文献