论文部分内容阅读
针对基于单一神经网络的软件可靠性模型预测精度低和可信性差的问题,提出一种基于加权信息熵(WIE)的Real BP-AdaBoost算法。首先,用BP神经网络个体代替Real AdaBoost算法的基分类器,构建Real BP-AdaBoost算法。然后,对Real BP-AdaBoost算法的加权方式进行改进,以基分类器对训练样本的整体分类权值与基分类器对测试样本的个体分类权值的乘积作为最终的加权系数,得到WIE Real BP-Ada-Boost算法。最后,通过2组软件实际失效数据对WIE Real B