论文部分内容阅读
目的:探讨32P-磷酸铬-聚L-乳酸(32P-CP-PLLA)缓释粒子局部植入对裸鼠前列腺癌的治疗作用。方法:建立裸鼠前列腺癌皮下移植瘤模型,然后将裸鼠进行如下分组,A、B、C为高、中、低剂量(14.8、7.4、3.7MBq)32P-CP-PLLA缓释粒子组,D、E、F为同等活度125I粒子组(14.8、7.4、3.7MBq),G为空白对照组,每组6只,植入粒子后观察:①32P缓释粒子和125I粒子对瘤体的病理形态学以及抑瘤率的影响;②外周血计数白细胞(WBC)和血小板(PLT)变化,观察血液毒性反应。结果:治疗21d后处死裸鼠,病理形态学显示实体瘤组织呈出血、坏死性改变,抑瘤率与给药剂量呈正相关,给药剂量为3.7、7.4、14.8MBq时,21d时各组抑瘤率[(65.72±6.95)%、(77.58±4.32)%、(82.64±4.03)%]、白细胞计数[(1.72±0.37)×109/L、(1.23±0.27)×109/L、(0.86±0.25)×109/L]、血小板计数[(1.18±0.11)×1011/L、(0.97±0.10)×1011/L、(0.72±0.11)×1011/L]、体重[(18.60±0.66)g、(17.60±0.39)g、(16.90±0.68)g]与相应各剂量的125I粒子组(3.7、7.4、14.8MBq)的抑瘤率[(35.61±5.61)%、(43.30±6.94)%、(69.01±4.98)%]、以及125I粒子组和空白对照组的白细胞计数[(1.45±0.40)×109/L、(0.51±0.24)×109/L、(0.37±0.26)×109/L、(3.96±0.26)×109/L]、血小板计数[(0.97±0.15)×1011/L、(0.76±0.16)×1011/L、(0.64±0.12)×1011/L、(2.89±0.21)×1011/L]、体重[(17.86±0.60)g、(15.56±0.39)g、(14.61±0.65)g、(19.95±0.73)g]比较差异有统计学意义(P均<0.01)。结论:32P-CP-PLLA缓释粒子瘤体植入治疗前列腺癌为一种安全、简便、有效的核素介入疗法。
Objective: To investigate the therapeutic effect of local implantation of 32P-CP-PLLA sustained release nanoparticles on prostate cancer in nude mice. Methods: The nude mice model of prostate cancer subcutaneously transplanted was established. The nude mice were divided into groups as follows: A, B and C were high, medium and low doses (14.8, 7.4, 3.7MBq) D, E, F for the same activity 125I particles group (14.8,7.4,3.7MBq), G is a blank control group, 6 in each group, after the observation of the particles: ①32P slow release particles and 125I particles of the tumor pathology Morphology and tumor inhibition rate; ② count the white blood cells (WBC) and platelet (PLT) changes in peripheral blood to observe the hematological toxicity. Results: After 21 days of treatment, the nude mice were sacrificed and the pathological changes of the tumors were observed. The histological changes of the tumors showed a positive correlation with the dose of the tumor. When the doses were 3.7, 7.4 and 14.8 MBq, The rates of tumor cells were significantly higher than those of the control group (P <0.05). The rates of tumor in the two groups were significantly higher than those in the control group (65.72 ± 6.95%, 77.58 ± 4.32%, 82.64 ± 4.03%, 1.37 ± 0.37, (0.18 ± 0.11) × 1011 / L, (0.72 ± 0.11) × 1011 / L] and body weight [(18.60 ± 0.66) (35.61 ± 5.61)% and (43.30 ± 6.94)%, respectively, in 125I particles group (3.7,7.4,14.8MBq) with the corresponding dose of (17.60 ± 0.39) g and (16.90 ± 0.68) , (69.01 ± 4.98)%], and the white blood cell count of 125I particle group and blank control group [(1.45 ± 0.40) × 109 / L, (0.51 ± 0.24) × 109 / L, (0.37 ± 0.26) , (3.96 ± 0.26) × 109 / L], platelet count [(0.97 ± 0.15) × 1011 / L, (0.76 ± 0.16) × 1011 / L, (0.64 ± 0.12) × 1011 / L, (2.89 ± 0.21) × 10 11 / L], body weight [(17.86 ± 0.60) g, (15.56 ± 0.39) g, (14.61 ± 0.65) g, (19.95 ± 0.73) g], respectively. Conclusion: 32P-CP-PLLA slow-release particle tumor implantation for prostate cancer is a safe, simple and effective interventional therapy for radionuclides.