论文部分内容阅读
针对现有多测量向量(multiple measurement vectors,MMV)模型稀疏重构算法在冲击噪声背景下存在的鲁棒性不强、适用性不广等问题,本文提出了一种冲击噪声下任意稀疏结构的MMV模型(ASS-MMV)稀疏重构算法。该算法利用Lorentzian范数和矩阵平滑零范数正则化构造稀疏优化目标函数,建立冲击噪声背景下ASS-MMV重构模型;结合固定步长公式和具有充分下降性质的共轭梯度算法,在统一参数框架下并行重构,以提高算法收敛速度和运行效率。仿真结果表明:本文算法能够在冲击噪声背景下高质量的