【摘 要】
:
韩信是我国汉代著名的大将,曾经统率过千军万马,他对手下士兵的数目了如指掌. 他统计士兵数目有个独特的方法,后人称为“韩信点兵”. 他的方法是这样的,部队集合齐后,他让士兵1、2、3—1、2、3、4、5—1、2、3、4、5、6、7地报三次数,然后把每次的余数再报告给他,他便知道部队的实际人数和缺席人数. 他的这种计算方法历史上还称为“鬼谷算”“隔墙算”“剪管术”,外国人则叫“中国剩余定理”. 有人用
论文部分内容阅读
韩信是我国汉代著名的大将,曾经统率过千军万马,他对手下士兵的数目了如指掌. 他统计士兵数目有个独特的方法,后人称为“韩信点兵”. 他的方法是这样的,部队集合齐后,他让士兵1、2、3—1、2、3、4、5—1、2、3、4、5、6、7地报三次数,然后把每次的余数再报告给他,他便知道部队的实际人数和缺席人数. 他的这种计算方法历史上还称为“鬼谷算”“隔墙算”“剪管术”,外国人则叫“中国剩余定理”. 有人用一首诗概括了这个问题的解法:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知. 这意思就是,第一次余数乘70,第二次余数乘21,第三次余数乘以15,把这三次运算的结果加起来,再除以105,所得的余数便是所求之数(即总数,总数小于105). 例如,如果3个3个地报数余1,5个5个地报数余2,7个7个地报数余3,则总数为52. 算式如下:
1×70 2×21 3×15=157
157÷105=1……52
下边给同学们出一道题,请用“韩信点兵法”算一算.
小红暑假期间帮着张二婶放鸭子,她总也数不清一共有多少只鸭子. 她先是3只3只地数,结果剩2只;她又5只5只地数,结果剩4只;她又7只7只地数了一遍,结果剩6只. 她算来算去还是算不清一共有多少只鸭子. 小朋友,请你帮着小红算一下,张二婶一共喂着多少只鸭子?
(作者单位:江苏省连云港市赣榆外国语学校)
其他文献
本章涉及的内容影响深远,希望同学们认真学习,仔细体会其中的思想,历年中考都有考题光顾本章. 现将今年各地中考题选取几题解析如下. 1. (2015·四川成都第7题) 数a、b在数轴上对应的点的位置如图所示,计算a-b的结果为( ). A. a b B. a-b C. b-a D. -a-b 【答案】C. 【解析】根据数轴上两数的特点判断出a、b的符号及绝对值的大小,再对a-b进行分析即
《苏科版数学七年级下册》有这样一道题:桌上有3只杯口都朝上的茶杯,每次翻转2只,能否经过若干次翻转使3只杯子的杯口全部朝下?7只杯口都朝上的茶杯每次翻转3只呢?如果用“ 1”或“-1”分别表示杯口“朝上”或“朝下”,你能用有理数的运算说明其中的道理吗? 下面我们通过操作探究来解决这一问题. 一、 动手操作 获得结论 探究一:取3只茶杯,杯口全部朝上,每次翻转其中1只,经过若干次翻转,能否使杯
活动目标:rn1. 通过操作测量,估算叠合后纸张的厚度,使合情推理过渡到演绎推理.rn2. 通过折纸活动,经历几何倍增的过程,培养估算能力,培养数感.
同学们刚进七年级就学习到有理数,扩充了数系,开拓了自己的知识视野.有理数中蕴含了丰富的数学思想方法,所谓的数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动,所谓的数学方法,是指某一数学活动的途径、程序、手段,它具有过程性、层次性、可操作性等特点. 数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法. 一、 数形结合思想 我国著名数学家华
王米叶片长宽生长有显著相关,经三年观察、分析结果证明:建立回归方程(?)=a+bxr=0.9749;经数理统计,t>t0.001,极为显著相关。上述结果,在不同地区,不同播期,不同品种,不同处
绝对值,是苏科版七年级上册“有理数”这一章的一个重点. 课本中给绝对值下的定义为:数轴上表示一个数的点与原点的距离叫作这个数的绝对值. 如果同学们觉得文字性的表述有些抽象,那么我们不妨使这句话具体一些. 如图1,点A,B,C,D,E分别表示数轴上的有理数-5,-3.5,0,2.5,5. 通过图可以得到,点A到原点(0)的距离为5,即-5的绝对值为5,用符号语言表示为-5=5,以此类推,-3.5=
生活处处是数学. 生活中许多问题,都要用有理数来解决问题. 下面来看几个故事吧. 故事1 一个星期天的上午,小亮和爸爸妈妈在家里看电视,电视上正在播放一场篮球比赛. 看了一会儿,爸爸突然对小亮说:“小亮,我来考你一个数学问题,看看你会不会?” 小亮张口就说:“好的,没问题. ”爸爸想了一下,说道:“假设红队一分钟投进8个球,蓝队一分钟投进6个球,他们一起投了8分钟之后,蓝队提高命中率一分钟投进1
利用有理数的乘方解决实际问题,是“有理数”这一章节的重点内容之一. 在学习这一课的时候,我遇到了几道有趣的题目,现与大家分享. 问题一:手工拉面是我国的传统面食. 制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为“一扣”),如此反复操作,连续拉扣若干次后便成了许多根细细的面条. 你能算出拉扣6次后共有多少根面条吗? 【思考与分析】
创业项目概况 主要经营范围: 各种炒饭、盖浇饭、家常小炒。 拟成立企业(机构)类型: □生产制造 ■零售 □批发 ■服务 □农业 □新型产业 □传统产业 □其他 创业项目持有者的个人情况 以往与创业相关的人生经验(包括时间、地点、内容): 2011年3月入校后便参与班级创业教育和创业实践活动。 2011年4月参加烹饪系创业团队参加创业培训及创业实践活动。 2011年3月参与烹饪系
GES-1细胞系是我室经SV40T转化的胎儿胃粘膜上皮永生化细胞系,可在体外稳定传代,并且在裸鼠中不致瘤,MC细胞系是GES-1细胞经胃癌相关化学致癌剂亚硝酰胺代表物N甲基N硝基胍嘧