【摘 要】
:
为了了解天山乌鲁木齐河源1号冰川(简称乌源1号冰川)空气及气溶胶中可培养酵母菌的多样性、系统发育、空间分布及其与冰川生境酵母菌的关系,在乌源1号冰川西支3个海拔梯度位
【机 构】
:
石河子大学生命科学学院,新疆石河子832000;石河子大学食品学院,新疆石河子832000
论文部分内容阅读
为了了解天山乌鲁木齐河源1号冰川(简称乌源1号冰川)空气及气溶胶中可培养酵母菌的多样性、系统发育、空间分布及其与冰川生境酵母菌的关系,在乌源1号冰川西支3个海拔梯度位点收集空气气溶胶,采用4种培养基分离空气源酵母菌,根据菌落形态和显微镜镜检细胞形态初步分组,采用MSP-PCR指纹分型和rRNA基因间隔序列(ITS)确定酵母菌菌株的系统发育和分类地位,并分析了空气源酵母菌群落的多样性及空间分布特征.研究表明:从乌源1号冰川的表面空气共分离414株酵母菌,全部隶属于担子菌门(Basidiomycota),MSP-PCR指纹分型划分为53个基因型,代表菌株ITS基因测序结果显示隶属于9属28种,其中24种为伞菌亚门(Agariomycotina)成员,4种属于柄锈菌亚门(Pucciniomycotina),其中Holtermanniella、Vishniacozyma、Filobasidium、Dioszegia为优势酵母菌属.有6株酵母菌最适生长温度为16~18℃,为嗜冷菌,其余24株为耐冷菌,最适生长温度为22~25℃.Holtermanniella festucosa与Vishniacozyma victoriae为冰川空气广布的优势酵母菌种(22.22%、16.91%),其他大多为来自周边生境的耐冷酵母菌,在冰川生境均有分布.此外,在小幅度的海拔梯度上,3个海拔高度的空气酵母菌群落结构有所不同,但多样性指数没有显著差异.冰川生境酵母菌来源与其周边空气酵母菌密切相关,但以Holtermanniella属为代表的空气源优势酵母在冰川生境不能分离,说明冰川的严酷条件对外源微生物具有明显的选择作用.
其他文献
以疏勒河源区为研究区,自2018年12月至2019年11月分别采集河水、泉水和雪样样品44个、4个和7个,综合运用Piper三线图、Gibbs图、离子比值法定性分析不同水体水化学特征及控制
喹啉及其衍生物的多相不对称氢转移是制备杂环手性化合物的理想策略.多相手性催化体系具有催化剂可循环利用及产物分离提纯容易等优势.然而,喹啉及其衍生物的多相手性高效催
氢能具有能量密度高、清洁无污染等优势,被认为是理想的能源,受到越来越多的关注.利用太阳能和风能等可再生能源电解水制氢是一种极具发展前景的可以规模化获取清洁氢气的能
传统化石能源的大量消耗使得能源短缺和环境污染等问题日益严峻.社会的可持续发展需要进行能源结构调整,寻求清洁、可再生的替代能源已迫在眉睫.氢能作为一种可再生能源,其热
研究黄河源区植被覆盖度时空变化对于深入理解青藏高原多年冻土区在气候变化和人类活动双重作用下的植被响应,以及为黄河源区生态环境保护和治理提供决策具有重要的意义.以陆
滑雪场的积雪条件是评价其盈利能力的关键指标.通过积雪模型准确地模拟滑雪场积雪条件对评估滑雪旅游目的地的气候风险具有重要意义,积雪模型亦可为滑雪场的造雪量和造雪时间
为探讨云量对冰川表面能量平衡(SEB)的影响,利用架设在老虎沟12号冰川(简称12号冰川)消融区(4550 m a.s.l.)的自动气象站资料,结合能量平衡模型计算各能量分量并分析其季节变
土壤冻融特征曲线(SFTC)可以描述冻融过程中未冻水含量随负温的变化关系.准确刻画土壤冻融特征曲线对土壤的冻融过程及相关的水热耦合运移研究至关重要.以往研究中土壤冻融特
为了提高季节冻土隧道的防冻保温性能,常采用铺设聚氨酯类有机保温层的方式以防止围岩冻结,但由于有机材料在冻融循环过程中老化速度快、保温结构设计缺少科学依据等局限性,
以青藏高原多年冻土区高寒沼泽化草甸为研究对象,采用雪栅栏诱导方式模拟积雪厚度增加,结合植物地上、地下根系以及土壤养分变化,分析了高寒沼泽化草甸对积雪厚度增加的响应.