论文部分内容阅读
提出了一个基于自适应的学习矢量量化神经网络(LVQ)的乳腺肿瘤良恶性分类方法,在提取特征向量的基础上,对CC和MLO两种视图的良性和恶性数字化乳腺X光片图像进行训练和测试,并使用最佳分类率和平均分类率来分析分类结果。实验结果表明该方法对CC视图的图像的平均测试分类率为92.6%,而对MLO视图是93.18%。在微钙化分类系统中采用逻辑"或"的方式合并两种不同视图下的网络,可以获得的最佳分类性能是94.8%。