论文部分内容阅读
一个 CDP 道集经动校正后,多次波仍存在剩余时差δt,它随炮检距呈抛物线规律变化。由δt 的变化即可求出多次波剩余波数△k 的分布规律。据此,可设计一个理想的叠加复剩余波数响应,以菲涅尔(Fejer)多项式来逼近,求出各叠加道的加权系数,用于动校正后的 CDP 道集道的加权叠加。在 t—x 平面选择δt,即可改变叠加复剩余波数响应,从而改变各道的加权系数,实现最佳压制多次波的效果。
After a CDP gather is corrected by motion, the residual time difference δt still exists in multiple waves, which changes parabolically with the offset. By the change of δt, the distribution rule of the residual wave number △ k can be obtained. Therefore, we can design an ideal superposed residual wave number response, approximate it with Fejer polynomial, and get the weighting coefficient of each superposition path for the weighted superposition of the motion-corrected CDP path. In the t-x plane select δt, you can change the superposition complex residual wave number response, thus changing the weight of each channel coefficient, to achieve the best suppression of multiple effects.